CSCI5070 Advanced Topics in Social Computing

Irwin King

The Chinese University of Hong Kong

king@cse.cuhk.edu.hk

©2012 All Rights Reserved.

Social Recommender Systems

- Introduction
- Collaborative Filtering
- Trust-aware Recommender Systems
- Social-based Recommender Systems
- Web Site Recommendation

Social Recommendation Using Probabilistic Matrix Factorization

[Hao Ma, et al., CIKM2008]

Challenges

Data sparsity problem

Challenges

My Movie Ratings
The Pursuit of Happyness (PG-13, 1 hr. 57 min.)

Buy DVD | Add to My Lists

Yahoo! Users: B+ 38992 ratings B- 13 reviews The Critics:

🔝 My Rating: A+

Finding Nemo (G. 1 hr. 40 min.) Buy DVD | Add to My Lists

Yahoo! Users: B+ 137394 ratings The Critics: A- 14 reviews

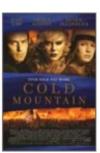
My Rating: A

My Blueberry Nights (PG-13, 1 hr. 30 min.)

Buy DVD | Add to My Lists

Yahoo! Users: B- 756 ratings The Critics B- 7 reviews

My Rating: A+



Cold Mountain (R, 2 hrs. 35 min.) Buy DVD | Add to My Lists

Yahoo! Users: B 38986 ratings The Critics: B+ 10 reviews

My Rating: B+

The Lord of the Rings: The Fellowship of the Ring

Buy DVD | Add to My Lists

Yahoo! Users: A- 110957 ratings The Critics: 15 reviews

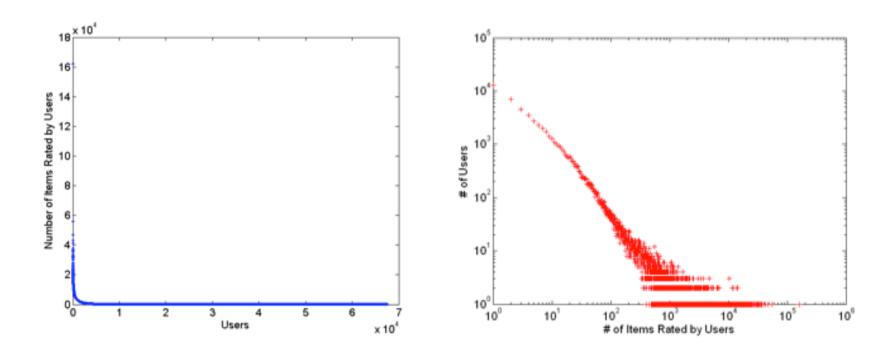
🖸 My Rating: A

Shrek 2 (PG, 1 hr. 32 min.) Buy DVD | Add to My Lists

Yahoo! Users: B+ 150368 ratings The Critics: 15 reviews

😭 My Rating: B

Number of Ratings per User



Extracted From Epinions.com 114,222 users, 754,987 items and 13,385,713 ratings

Challenges

 Traditional recommender systems ignore the social connections between users

Recommendations from friends

one

shoul

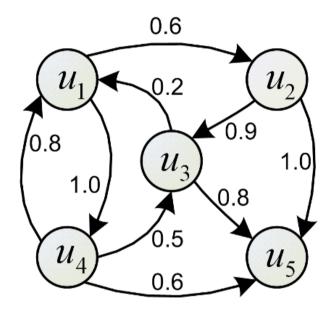
choes

e?

Motivations

- "Yes, there is a correlation from social networks to personal behavior on the web"
- Parag Singla and Matthew Richardson (WWW'08)
 - Analyze the who talks to whom social network over 10 million people with their related search results
 - People who chat with each other are more likely to share the same or similar interests
- To improve the recommendation accuracy and solve the data sparsity problem, users' social network should be taken into consideration

Problem Definition



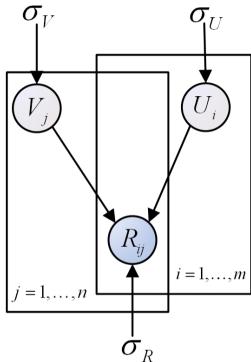
Social Trust Graph

	v_1	v_2	v_3	v_4	v_5	v_6
u_1		5	2		3	
u_2	4			3		4
u_3			2			2
u_4	5			3		
u_5		5	5			3

User-Item Rating Matrix

User-Item Matrix Factorization

	v_1	v_2	v_3	v_4	v_5	v_6
u_1		5	2		3	
u_1 u_2 u_3 u_4	4			3		4
u_3			2			2
u_4	5			3		
u_5		5	5			3



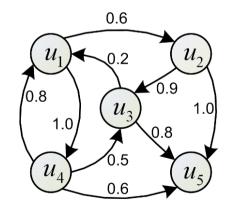
$$p(R|U, V, \sigma_R^2) = \prod_{i=1}^m \prod_{j=1}^n \left[\mathcal{N}\left(R_{ij}|g(U_i^T V_j), \sigma_R^2\right) \right]^{I_{ij}^R}$$

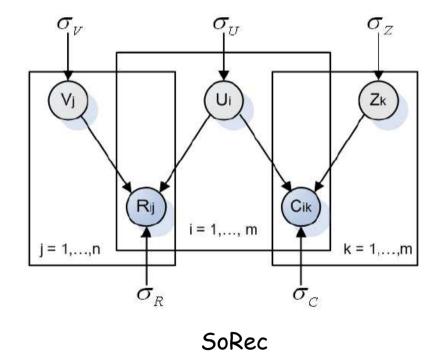
$$p(U|\sigma_U^2) = \prod_{i=1}^m \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I}) \qquad p(V|\sigma_V^2) = \prod_{j=1}^n \mathcal{N}(V_j|0, \sigma_V^2 \mathbf{I})$$

R. Salakhutdinov and A. Mnih (NIPS'08)

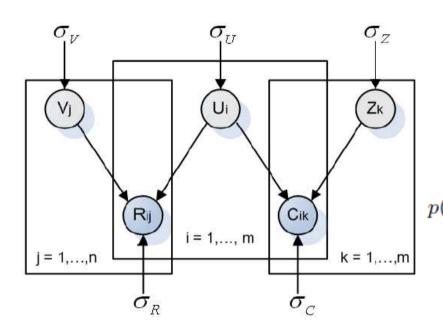
SoRec

	v_1	v_2	v_3	v_4	v_5	v_6
u_1		5	2		3	
u_2	4			3		4
u_3			2			2
u_4	5			3		
u_5		5	5			3





SoRec



$$p(R|U, V, \sigma_R^2) = \prod_{i=1}^m \prod_{j=1}^n \mathcal{N}\left[\left(r_{ij}|g(U_i^T V_j), \sigma_R^2\right)\right]^{I_{ij}^R}$$

$$p(C|U, Z, \sigma_C^2) = \prod_{i=1}^m \prod_{k=1}^m \mathcal{N}\left[\left(c_{ik}|g(U_i^T Z_k), \sigma_C^2\right)\right]^{I_{ik}^C}$$

$$p(U|\sigma_U^2) = \prod_{i=1}^m \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I}) \ p(V|\sigma_V^2) = \prod_{j=1}^n \mathcal{N}(V_j|0, \sigma_V^2 \mathbf{I})$$

$$p(Z|\sigma_Z^2) = \prod_{i=1}^m \mathcal{N}(Z_k|0, \sigma_Z^2 \mathbf{I})$$

$$\mathcal{L}(R, C, U, V, Z) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (r_{ij} - g(U_{i}^{T} V_{j}))^{2} + \frac{\lambda_{C}}{2} \sum_{i=1}^{m} \sum_{k=1}^{m} I_{ik}^{C} (c_{ik}^{*} - g(U_{i}^{T} Z_{k}))^{2} + \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2} + \frac{\lambda_{Z}}{2} ||Z||_{F}^{2},$$

SoRec

$$\frac{\partial \mathcal{L}}{\partial U_{i}} = \sum_{j=1}^{n} I_{ij}^{R} g'(U_{i}^{T} V_{j}) (g(U_{i}^{T} V_{j}) - r_{ij}) V_{j}$$

$$+ \lambda_{C} \sum_{j=1}^{m} I_{ik}^{C} g'(U_{i}^{T} Z_{k}) (g(U_{i}^{T} Z_{k}) - c_{ik}^{*}) Z_{k} + \lambda_{U} U_{i},$$

$$\frac{\partial \mathcal{L}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij}^{R} g'(U_{i}^{T} V_{j}) (g(U_{i}^{T} V_{j}) - r_{ij}) U_{i} + \lambda_{V} V_{j},$$

$$\frac{\partial \mathcal{L}}{\partial Z_{k}} = \lambda_{C} \sum_{i=1}^{m} I_{ik}^{C} g'(U_{i}^{T} Z_{k}) (g(U_{i}^{T} Z_{k}) - c_{ik}^{*}) U_{i} + \lambda_{Z} Z_{k},$$

Complexity Analysis

- ullet For the Objective Function $O(
 ho_R l +
 ho_C l)$
- For $\frac{\partial \mathcal{L}}{\partial U}$ the complexity is $O(\rho_R l + \rho_C l)$
- For $\frac{\partial \mathcal{L}}{\partial V}$ the complexity is $O(\rho_R l)$
- For $\frac{\partial \mathcal{L}}{\partial Z}$ the complexity is $O(\rho_C l)$
- In general, the complexity of our method is linear with the observations in these two matrices

Experimental Analysis

 Table: MAE comparison with other approaches (A smaller MAE value means a better performance)

Training Data	Dimensionality = 5				Dimensionality = 10			
	MMMF	PMF	CPMF	SoRec	MMMF	PMF	CPMF	SoRec
99%	1.0008	0.9971	0.9842	0.9018	0.9916	0.9885	0.9746	0.8932
80%	1.0371	1.0277	0.9998	0.9321	1.0275	1.0182	0.9923	0.9240
50%	1.1147	1.0972	1.0747	0.9838	1.1012	1.0857	1.0632	0.9751
20%	1.2532	1.2397	1.1981	1.1069	1.2413	1.2276	1.1864	1.0944

MMMF:

J.D.M Rennie and N. Srebro (ICML'05)

PMF & CPMF:

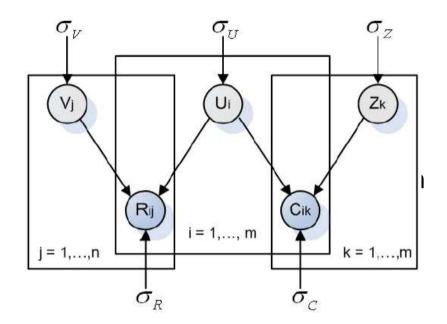
R. Salakhutdinov and A. Mnih (NIPS'08)

Epinions: 40,163 users who rated 139,529 items with totally 664,824 ratings

Disadvantages of SoRec

Lack of interpretability

Does not reflect the real-world process

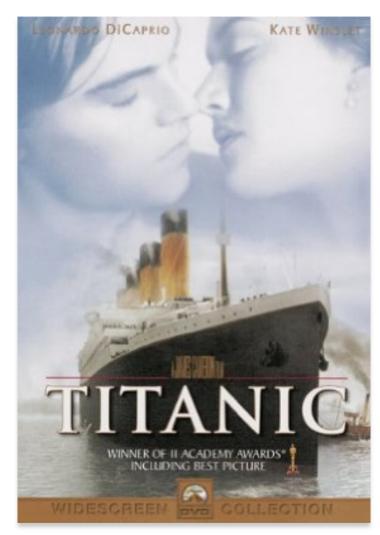


SoRec

Learning to Recommend with Social Trust Ensemble

[Hao Ma, et al., SIGIR2009]

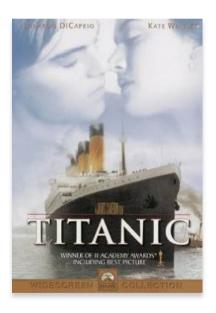
Ist Motivation



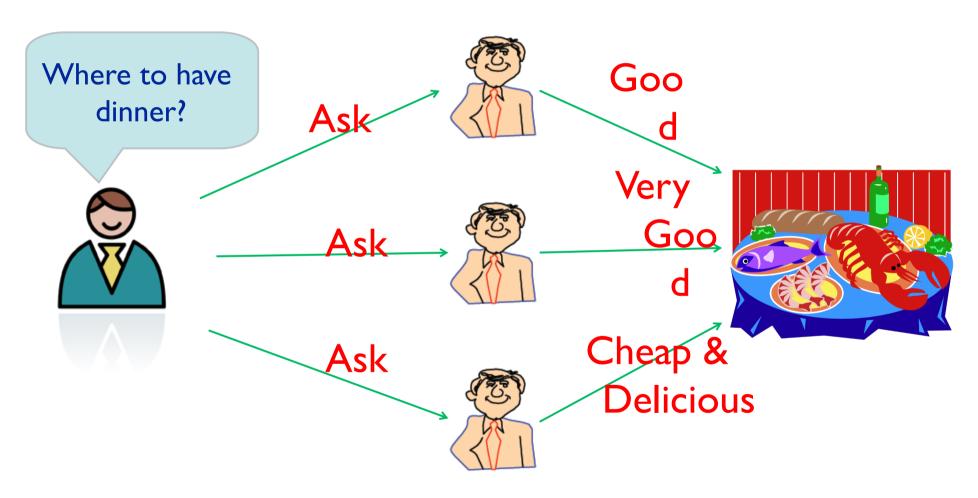
Ist Motivation

Ist Motivation

• Users have their own characteristics, and they have different tastes on different items, such as movies, books, music, articles, food, etc.



2nd Motivation



2nd Motivation

• Users can be easily influenced by the friends they trust, and prefer their friends' recommendations.



Motivations

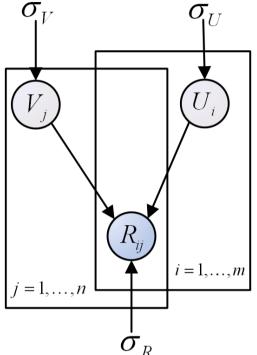
 Users have their own characteristics, and they have different tastes on different items, such as movies, books, music, articles, food, etc.

Users can be easily influenced by the friends they trust, and prefer their friends' recommendations.

One user's final decision is the balance between his/her own taste and his/her trusted friends' favors.

User-Item Matrix Factorization

	v_1	v_2	v_3	v_4	v_5	v_6
u_1		5	2		3	
u_2	4			3		4
u_3			2			2
u_4	5			3		
u_5		5	5			3



$$p(R|U, V, \sigma_R^2) = \prod_{i=1}^m \prod_{j=1}^n \left[\mathcal{N}\left(R_{ij}|g(U_i^T V_j), \sigma_R^2\right) \right]^{I_{ij}^R}$$

$$p(U|\sigma_U^2) = \prod_{i=1}^m \mathcal{N}(U_i|0, \sigma_U^2 \mathbf{I}) \qquad p(V|\sigma_V^2) = \prod_{j=1}^n \mathcal{N}(V_j|0, \sigma_V^2 \mathbf{I})$$

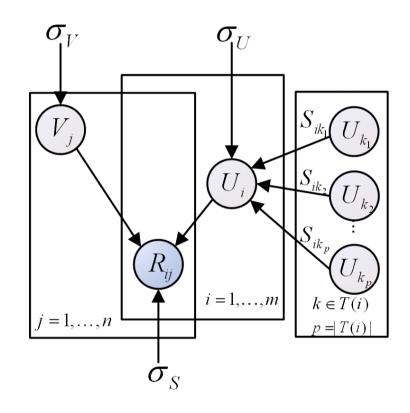
[R. Salakhutdinov, et al., NIPS2008]

Recommendations by Trusted Friends

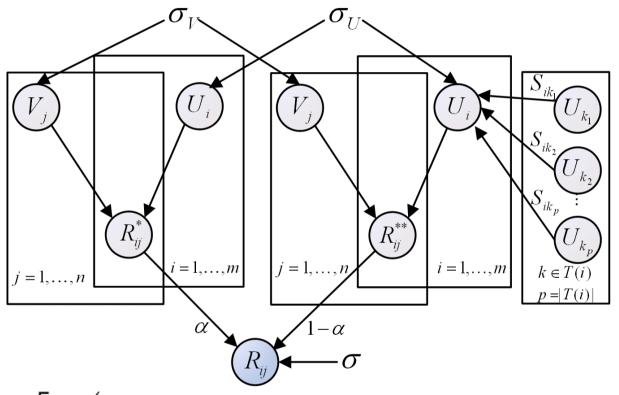
$$\widehat{R}_{ik} = \frac{\sum_{j \in \mathcal{T}(i)} R_{jk} S_{ij}}{|\mathcal{T}(i)|}$$

$$\widehat{R}_{ik} = \sum_{j \in \mathcal{T}(i)} R_{jk} S_{ij}$$

$$p(R|S, U, V, \sigma_R^2) = \prod_{i=1}^m \prod_{j=1}^n \left[\mathcal{N} \left(R_{ij} | g(\sum_{k \in \mathcal{T}(i)} S_{ik} U_k^T V_j), \sigma_S^2 \right) \right]^{I_{ij}^R}$$



Recommendation with Social Trust Ensemble



$$\prod_{i=1}^{m} \prod_{j=1}^{n} \left[\mathcal{N} \left(R_{ij} | g(\alpha U_i^T V_j + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_k^T V_j), \sigma^2 \right) \right]^{I_{ij}^R}$$

Recommendation with Social Trust Ensemble

$$\mathcal{L}(R, S, U, V)$$

$$= \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(\alpha U_{i}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T} V_{j}))^{2}$$

$$+ \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2}, \qquad (15)$$

$$\frac{\partial \mathcal{L}}{\partial U_{i}} = \alpha \sum_{j=1}^{n} I_{ij}^{R} g'(\alpha U_{i}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T} V_{j}) V_{j}
\times (g(\alpha U_{i}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T} V_{j}) - R_{ij})$$

$$+ (1 - \alpha) \sum_{p \in \mathcal{B}(i)} \sum_{j=1}^{n} I_{pj}^{R} g'(\alpha U_{p}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(p)} S_{pk} U_{k}^{T} V_{j})
\times (g(\alpha U_{p}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(p)} S_{pk} U_{k}^{T} V_{j}) - R_{pj}) S_{pi} V_{j}$$

$$+ \lambda_{U} U_{i},$$

$$\frac{\partial \mathcal{L}}{\partial V_{j}} = \sum_{i=1}^{m} I_{ij}^{R} g'(\alpha U_{i}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T} V_{j}) - R_{ij})
\times (g(\alpha U_{i}^{T} V_{j} + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T} V_{j}) - R_{pj}) S_{pi} V_{j}$$

$$\times (\alpha U_{i} + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T}) + \lambda_{V} V_{j},$$

$$\times (\alpha U_{i} + (1 - \alpha) \sum_{k \in \mathcal{T}(i)} S_{ik} U_{k}^{T}) + \lambda_{V} V_{j},$$

Complexity

• In general, the complexity of this method is linear with the observations the user-item matrix

Epinions Dataset

- 51,670 users who rated 83,509 items with totally 631,064 ratings
- Rating Density 0.015%
- The total number of issued trust statements is 511,799

Metrics

Mean Absolute Error and Root Mean Square Error

$$MAE = \frac{\sum_{i,j} |r_{i,j} - \widehat{r}_{i,j}|}{N}$$

$$RMSE = \sqrt{\frac{\sum_{i,j} (r_{i,j} - \widehat{r}_{i,j})^2}{N}}.$$

Comparisons

Table III: Performance Comparisons (A Smaller MAE or RMSE Value Means a Better Performance)

Training	Motrica			Dimer	nsionality	=5			
Data	Metrics	UserMean	ItemMean	NMF	PMF	Trust	SoRec	RSTE	
90%	MAE	0.9134	0.9768	0.8738	0.8676	0.9054	0.8442	0.8377	
9070	RMSE	1.1688	1.2375	1.1649	1.1575	1.1959	1.1333	1.1109	
80%	MAE	0.9285	0.9913	0.8975	0.8951	0.9221	0.8638	0.8594	
	RMSE	1.1817	1.2584	1.1861	1.1826	1.2140	1.1530	1.1346	
Training	Motrics	Dimensionality = 10 UserMean ItemMean NMF PMF Trust SoRec RSTE							
Data	Medics	UserMean	ItemMean	NMF	PMF	Trust	SoRec	RSTE	
90%	MAE	0.9134	0.9768	0.8712	0.8651	0.9039	0.8404	0.8367	
9070	RMSE	1.1688	1.2375	1.1621	1.1544	1.1917	1.1293	1.1094	
80%	MAE	0.9285	0.9913	0.8951	0.8886	0.9215	0.8580	0.8537	
	RMSE	1.1817	1.2584	1.1832	1.1760	1.2132	1.1492	1.1256	

NMF --- D. D. Lee and H. S. Seung (Nature 1999)

PMF --- R. Salakhutdinov and A. Mnih (NIPS 2008)

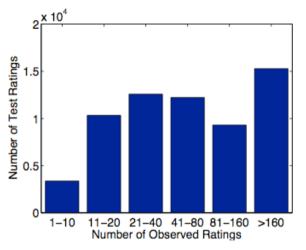
SoRec --- H. Ma, H. Yang, M. R. Lyu and I. King (CIKM 2008)

Trust, RSTE --- H. Ma, I. King and M. R. Lyu (SIGIR 2009)

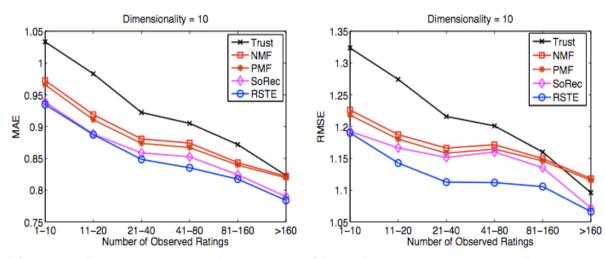
Performance on Different Users

 Group all the users based on the number of observed ratings in the training data

Performance on Different Users



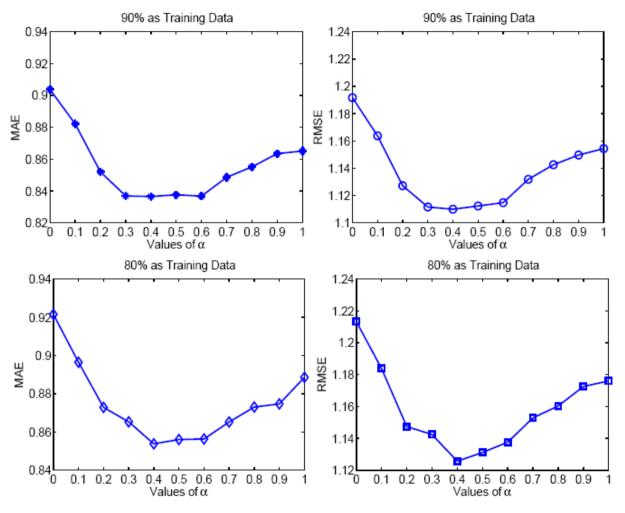
(a) Distribution of Testing Data (90% as Training Data)



(b) MAE Comparison on Different User Rating Scales (90% as Training Data)

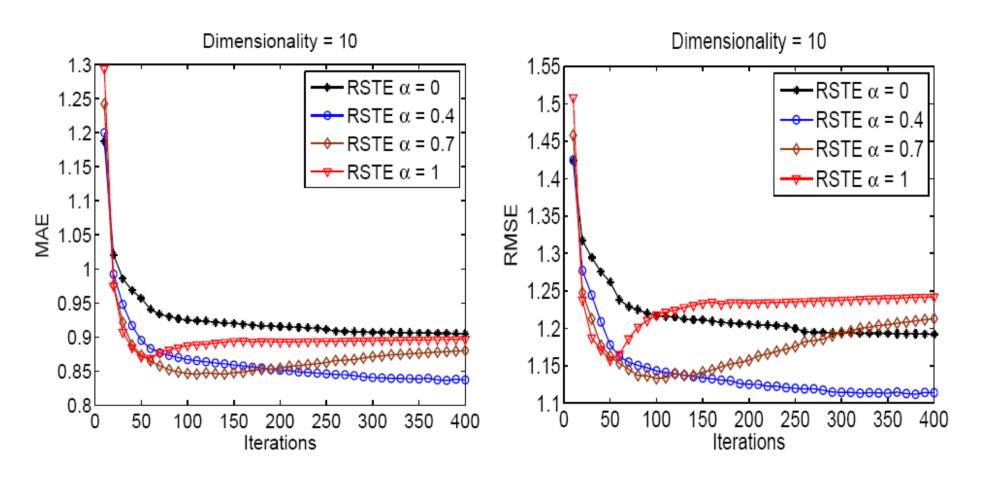
(c) RMSE Comparison on Different User Rating Scales (90% as Training Data)

Impact of Parameter Alpha



Impact of Parameter α (Dimensionality = 10)

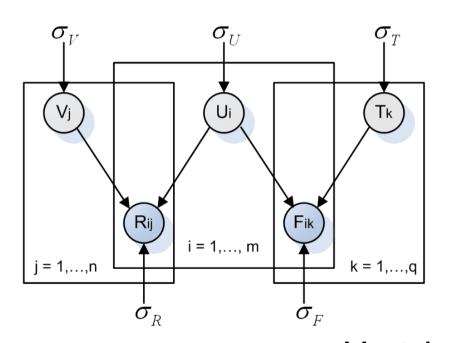
MAE and RMSE Changes with Iterations

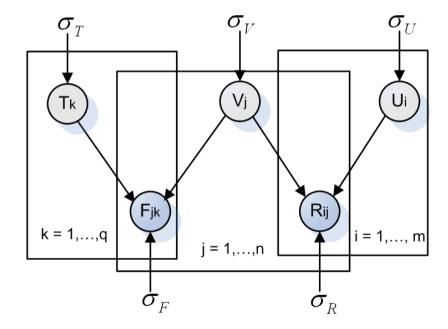


90% as Training Data

Further Discussion of SoRec

Improving Recommender Systems Using Social Tags





MovieLens Dataset
71,567 users, 10,681 movies,
10,000,054 ratings, 95,580 tags

Further Discussion of SoRec

MAE

Table V: MAE comparison with other approaches on MovieLens dataset (A smaller MAE value means a better performance)

			*	,		
Methods		80% Training	50% Training	30% Training	10% Training	
U	ser Mean	0.7686	0.7710	0.7742	0.8234	
Ite	em Mean	0.7379	0.7389	0.7399	0.7484	
	SVD	0.6390	0.6547	0.6707	0.7448	
5D	PMF	0.6325	0.6542	0.6698	0.7430	
3D	SoRecUser	0.6209	0.6419	0.6607	0.7040	
	SoRecItem	0.6199	0.6407	0.6395	0.7026	
	SVD	0.6386	0.6534	0.6693	0.7431	
10D	PMF	0.6312	0.6530	0.6683	0.7417	
101	SoRecUser	0.6197	0.6408	0.6595	0.7028	
	SoRecItem	0.6187	0.6395	0.6584	0.7016	

Further Discussion of SoRec

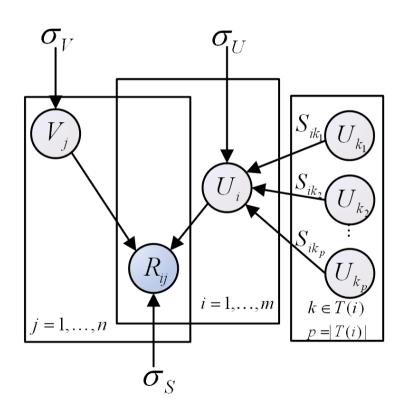
• RMSE

Table VI: RMSE comparison with other approaches on MovieLens dataset (A smaller RMSE value means a better performance)

1	Methods	80% Training	50% Training	30% Training	10% Training	
U	ser Mean	0.9779	0.9816	0.9869	1.1587	
Ite	em Mean	0.9440	0.9463	0.9505	0.9851	
	SVD	0.8327	0.8524	0.8743	0.9892	
5D	PMF	0.8310	0.8582	0.8758	0.9698	
3D	SoRecUser	0.8121	0.8384	0.8604	0.9042	
	SoRecItem	0.8112	0.8370	0.8591	0.9033	
	SVD	0.8312	0.8509	0.8728	0.9878	
10D	PMF	0.8295	0.8569	0.8743	0.9681	
101	SoRecUser	0.8110	0.8372	0.8593	0.9034	
	SoRecItem	0.8097	0.8359	0.8578	0.9019	

Further Discussion of RSTE

Relationship with Neighborhood-based methods

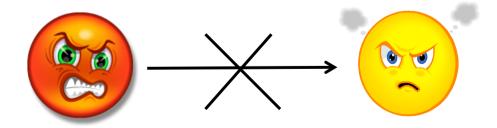


- The trusted friends are actually the explicit neighbors
- We can easily apply this method to include implicit neighbors
- Using PCC to calculate similar users for every user

What We Cannot Model Using SoRec and RSTE?

Propagation of trust

Distrust



Social Recommender Systems

- Introduction
- Collaborative Filtering
- Trust-aware Recommender Systems
- Social-based Recommender Systems
- Web Site Recommendation

Recommend with Social Distrust

[Hao Ma, et al., RecSys2009]

Trust vs. Social

- Trust-aware
 - Trust network: unilateral relations
 - Trust relations can be treated as "similar" relations
 - Few datasets available on the Web
- Social-based
 - Social friend network: mutual relations
 - Friends are very diverse, and may have different tastes
 - Lots of Web sites have social network implementation

Distrust

- Users' distrust relations can be interpreted as the "dissimilar" relations
 - On the web, user U_i distrusts user U_d indicates that user U_i disagrees with most of the opinions issued by user U_d .
 - What to do if a user distrusts many people?
 - What to do if many people distrust a user?

Distrust

$$\max_{U} \frac{1}{2} \sum_{i=1}^{m} \sum_{d \in \mathcal{D}^{+}(i)} S_{id}^{\mathcal{D}} \|U_{i} - U_{d}\|_{F}^{2}$$

$$\min_{U,V} \mathcal{L}_{\mathcal{D}}(R, S^{\mathcal{D}}, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(U_{i}^{T} V_{j}))^{2}
+ \frac{\beta}{2} \sum_{i=1}^{m} \sum_{d \in \mathcal{D}^{+}(i)} (-S_{id}^{\mathcal{D}} ||U_{i} - U_{d}||_{F}^{2})
+ \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2}.$$

Trust

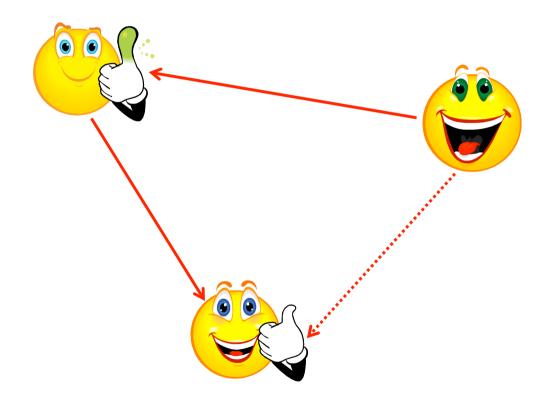
- Users' trust relations can be interpreted as the "similar" relations
 - On the web, user U_i trusts user U_t indicates that user U_i agrees with most of the opinions issued by user U_t .

Trust

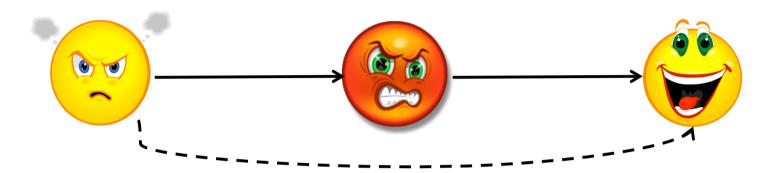
$$\underbrace{\min_{U} \frac{1}{2} \sum_{i=1}^{m} \sum_{t \in T^{+}(i)} S_{it}^{T} \|U_{i} - U_{t}\|_{F}^{2}}_{$$

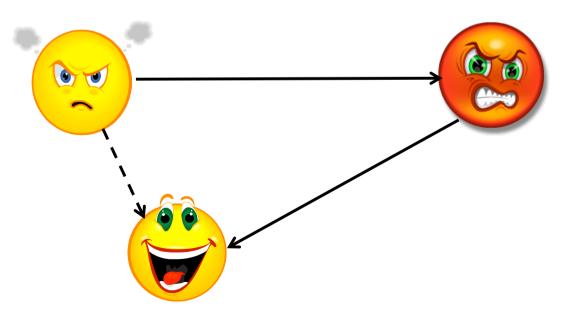
$$\min_{U,V} \mathcal{L}_{\mathcal{T}}(R, S^{T}, U, V) = \frac{1}{2} \sum_{i=1}^{m} \sum_{j=1}^{n} I_{ij}^{R} (R_{ij} - g(U_{i}^{T} V_{j}))^{2}
+ \frac{\alpha}{2} \sum_{i=1}^{m} \sum_{t \in \mathcal{T}^{+}(i)} (S_{it}^{T} ||U_{i} - U_{t}||_{F}^{2})
+ \frac{\lambda_{U}}{2} ||U||_{F}^{2} + \frac{\lambda_{V}}{2} ||V||_{F}^{2}.$$

Trust Propagation



Distrust Propagation?





Experiments

- Dataset Epinions
- 131,580 users, 755,137 items, 13,430,209 ratings
- 717,129 trust relations, 123,670 distrust relations

Data Statistics

Table 1: Statistics of User-Item Rating Matrix of Epinions

Statistics	User	Item	
Min. Num. of Ratings	1	1	
Max. Num. of Ratings	162169	1179	
Avg. Num. of Ratings	102.07	17.79	

Table 2: Statistics of Trust Network of Epinions

Statistics	Trust per User	Be Trusted per User		
Max. Num.	2070	3338		
Avg. Num.	5.45	5.45		

Table 3: Statistics of Distrust Network of Epinions

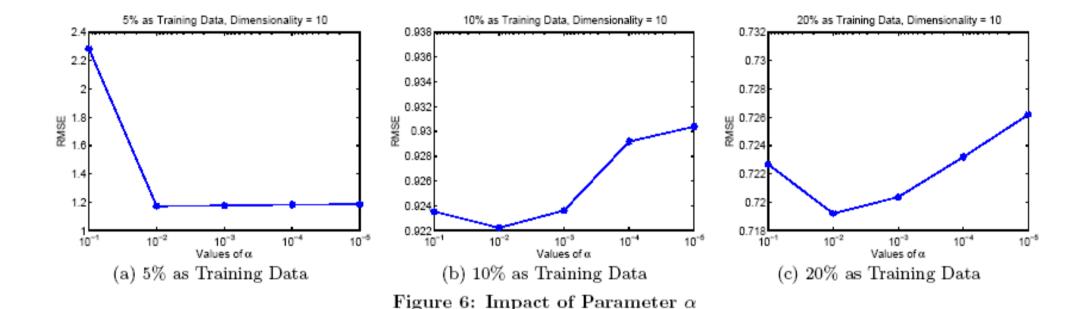
Statistics	Distrust per User	Be Distrusted per User
Max. Num.	1562	540
Avg. Num.	0.94	0.94

Experiments

RMSE

Dataset	Traning Data	Dimensionality	PMF	\mathbf{SoRec}	RWD	RWT
	5%	5D	1.228	1.199	1.186	1.177
	570	10D	1.214	1.198	1.185	1.176
Epinions	10%	5D	0.990	0.944	0.932	0.924
Epimons	1070	10D	0.977	0.941	0.931	0.923
	20%	5D	0.819	0.788	0.723	0.721
	2070	10D	0.818	0.787	0.723	0.720

Impact of Parameters



Alpha = 0.01 will get the best performance! Parameter beta basically shares the same trend!

Social Recommender Systems

- Introduction
- Collaborative Filtering
- Trust-aware Recommender Systems
- Social-based Recommender Systems

Comparison

- Trust-aware Recommender systems
 - Trust network
 - Trust relations can be treated as "similar" relations
 - Few dataset available on the web
- Social-based Recommender Systems
 - Social friend network, mutual relations
 - Friends are very divers, and may have different tastes
 - Lots of web sites have social network implementation

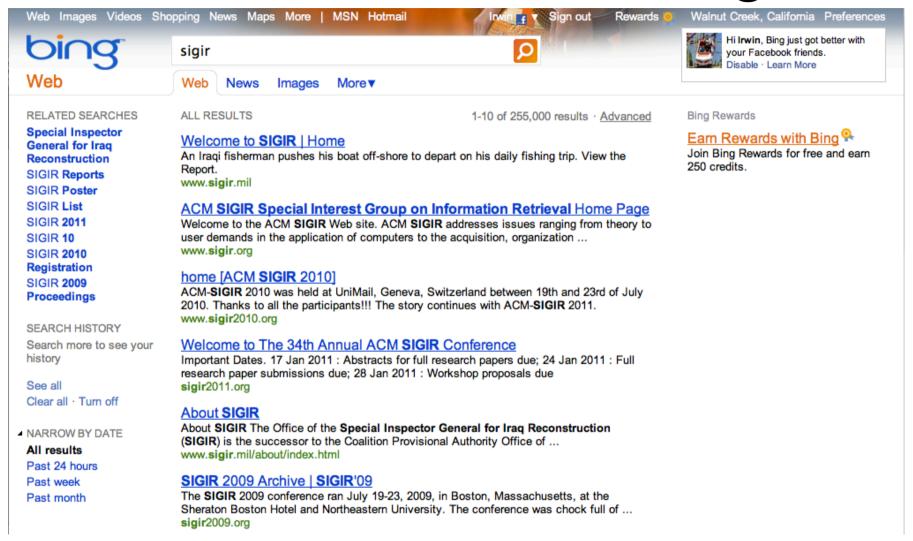
Social Recommender Systems

- Introduction
- Collaborative Filtering
- Trust-aware Recommender Systems
- Social-based Recommender Systems
- Web Site Recommendation

Web Site Recommendation

[Ma et al., SIGIR 2011]

Traditional Search Paradigm



"Search" to "Discovery"

Windows 8

iPhone 5

How to cook?

NEW Corp. Extended Service contracts. Extended warranties ...

NEW delivers innovative extended service plans, also known as extended warranties, and customos Macycle solutions for the entire consumer cementally experience...

Careers Consumer
Contact Ds Manufacturer
About Us Wireless
Service Plan FAQs Contoner Core
Should be a service or and the service of the service or and the service o

News Corporation

67 15 2011. Let Hinton, Charl Executes Officer of Doe Jones & Company and Publisher ... Yee All No. Corp. Procs Takeness In-

NEW Corp : Careers

file Part of Something NEW Founded in 1961, NEW has built a worth-case organization declosed providing innovative and componhensive customers care solutions and debering ... Most linear extension contribute physicismum.

News Corp.

Windows 8

iPhone 5

How to cook?

Challenges

Infeasible to ask Web users to explicitly rate Web site

 Not all the traditional methods can be directly applied to the Web site recommendation task

Can only take advantages of implicit user behavior data

Motivations

 A Web user's preference can be represented by how frequently a user visits each site

 Higher visiting frequency on a site means heavy information needs while lower frequency indicates less interests

 User-query issuing frequency data can be used to refine a user's preference

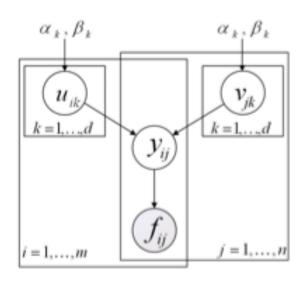
Using Clicks as Ratings

ID	Query	URL
358	facebook	http://www.facebook.com
358	rww	http://www.readwriteweb.com
3968	iphone4	http://www.apple.com
3968	ipad	http://www.apple.com
		•••

	Web sites									
		v_1	v_2	v_3	v_4	v_5	v_6			
s	u_1		68	1		15				
Web users	u_2	42			13		24			
	u_3		72	12		11	2			
>	u_4	15			33					
	u_5		85	45			63			

		Queries									
		z_1	z_2	z_3	z_4	z_5					
Web users	u_1	12		5	6						
	u_2		23		5	1					
eρι	u_3		14		35	18					
\geq	u_4	25		11	4						
	u_5		12	5		24					

Probabilistic Factor Model



- Generate u_{ik} ~ Gamma(α_k, β_k), ∀k.
- 2. Generate $v_{jk} \sim \text{Gamma}(\alpha_k, \beta_k), \forall k$.
- 3. Generate y_{ij} occurrences of item or event j from user i with outcome $y_{ij} = \sum_{k=1}^{d} u_{ik} v_{jk}$.
- Generate f_{ij} ∼ Poisson(y_{ij}).

$$p(U|\boldsymbol{\alpha}, \boldsymbol{\beta}) = \prod_{i=1}^{m} \prod_{k=1}^{d} \frac{u_{ik}^{\alpha_k - 1} \exp(-u_{ik}/\beta_k)}{\beta_k^{\alpha_k} \Gamma(\alpha_k)}$$

$$p(V|\boldsymbol{\alpha},\boldsymbol{\beta}) = \prod_{j=1}^{n} \prod_{k=1}^{d} \frac{v_{jk}^{\alpha_k - 1} \exp(-v_{jk}/\beta_k)}{\beta_k^{\alpha_k} \Gamma(\alpha_k)}$$

$$p(F|Y) = \prod_{i=1}^{m} \prod_{j=1}^{n} \frac{y_{ij}^{f_{ij}} \exp(-y_{ij})}{f_{ij}!}$$

$$p(U, V|F, \boldsymbol{\alpha}, \boldsymbol{\beta}) \propto p(F|Y)p(U|\boldsymbol{\alpha}, \boldsymbol{\beta})p(V|\boldsymbol{\alpha}, \boldsymbol{\beta})$$

$$\mathcal{L}(U, V; F) = \sum_{i=1}^{m} \sum_{k=1}^{d} ((\alpha_k - 1) \ln(u_{ik}/\beta_k) - u_{ik}/\beta_k)$$

$$+ \sum_{j=1}^{n} \sum_{k=1}^{d} ((\alpha_k - 1) \ln(v_{jk}/\beta_k) - v_{jk}/\beta_k)$$

$$+ \sum_{i=1}^{m} \sum_{j=1}^{n} (f_{ij} \ln y_{ij} - y_{ij}) + \text{const.}$$

Probabilistic Factor Model

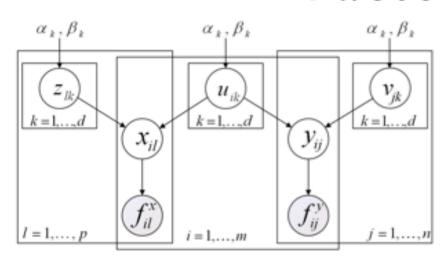
$$\mathcal{L}(U, V; F) = \sum_{i=1}^{m} \sum_{k=1}^{d} ((\alpha_k - 1) \ln(u_{ik}/\beta_k) - u_{ik}/\beta_k)$$

$$+ \sum_{j=1}^{n} \sum_{k=1}^{d} ((\alpha_k - 1) \ln(v_{jk}/\beta_k) - v_{jk}/\beta_k)$$

$$+ \sum_{i=1}^{m} \sum_{j=1}^{n} (f_{ij} \ln y_{ij} - y_{ij}) + \text{const.}$$

$$u_{ik} \leftarrow u_{ik} \frac{\sum_{j=1}^{n} (f_{ij}v_{jk}/y_{ij}) + (\alpha_k - 1)/u_{ik}}{\sum_{j=1}^{n} v_{jk} + 1/\beta_k}$$
$$v_{jk} \leftarrow v_{jk} \frac{\sum_{i=1}^{m} (f_{ij}u_{ik}/y_{ij}) + (\alpha_k - 1)/v_{jk}}{\sum_{i=1}^{m} u_{ik} + 1/\beta_k}$$

Collective Probabilistic Factor Model



$$\mathcal{L}(U, V, Z; F^{x}, F^{y})$$

$$= \sum_{i=1}^{m} \sum_{l=1}^{p} (f_{il}^{x} \ln x_{il} - x_{il}) + \sum_{i=1}^{m} \sum_{j=1}^{n} (f_{ij}^{y} \ln y_{ij} - y_{ij})$$

$$+ \sum_{i=1}^{m} \sum_{k=1}^{d} ((\alpha_{k} - 1) \ln(u_{ik}/\beta_{k}) - u_{ik}/\beta_{k})$$

$$+ \sum_{j=1}^{n} \sum_{k=1}^{d} ((\alpha_{k} - 1) \ln(v_{jk}/\beta_{k}) - v_{jk}/\beta_{k})$$

$$+ \sum_{l=1}^{p} \sum_{k=1}^{d} ((\alpha_{k} - 1) \ln(z_{lk}/\beta_{k}) - z_{lk}/\beta_{k}) + \text{const.}$$

$$u_{ik} \leftarrow u_{ik} \frac{\sum_{j=1}^{n} (f_{ij}^{y} v_{jk}/y_{ij}) + \sum_{l=1}^{p} (f_{il}^{x} z_{lk}/x_{il}) + (\alpha_{k} - 1)/u_{ik}}{\sum_{j=1}^{n} v_{jk} + \sum_{l=1}^{p} z_{lk} + 1/\beta_{k}}$$

$$v_{jk} \leftarrow v_{jk} \frac{\sum_{i=1}^{m} (f_{ij}^{y} u_{ik}/y_{ij}) + (\alpha_{k} - 1)/v_{jk}}{\sum_{i=1}^{m} u_{ik} + 1/\beta_{k}},$$

$$z_{lk} \leftarrow z_{lk} \frac{\sum_{i=1}^{m} (f_{il}^{x} u_{ik}/x_{il}) + (\alpha_{k} - 1)/z_{lk}}{\sum_{i=1}^{m} u_{ik} + 1/\beta_{k}}.$$

$$u_{ik} \leftarrow u_{ik} \frac{\theta \sum_{j=1}^{n} (f_{ij}^{y} v_{jk}/y_{ij}) + (1 - \theta) \sum_{l=1}^{p} (f_{il}^{x} z_{lk}/x_{il}) + (\alpha_{k} - 1)/u_{ik}}{\theta \sum_{j=1}^{n} v_{jk} + (1 - \theta) \sum_{l=1}^{p} z_{lk} + 1/\beta_{k}}$$

The Chinese University of Hong Kong, CSCI5070 Advanced Topics in Social Computing, Irwin King

Dataset

- Anonymous logs of Web sites visited by users who opted-in to provide data through browser toolbar
- URLs of all the Web sites are truncated to the site level
- After pruning one month data, we have 165,403 users,
 265,367 URLs and 442,598 queries
- User-site frequency matrix has 2,612,016 entries, while in user-query frequency matrix has 833,581 entries

Table 2: Statistics of User-Site and User-Query Frequency Matrices

Statistics	User-Site Frequency	User-Query Frequency				
Min. Num.	4	10				
Max. Num.	9,969	4,693				
Avg. Num.	20.33	23.05				

Performance Comparison

Table 3: Performance Comparison (Dimensionality = 10)

Training Data	Metrics	UserMean	SiteMean	SVD	PMF	NMF	GaP	PFM	CPFM
	NMAE	2.246	1.094	0.488	0.476	0.465	0.440	0.432	0.427
90%	Improve	80.98%	60.96%	12.50%	10.29%	8.17%	2.95%	0.432	0.427
9070	NRMSE	3.522	2.171	0.581	0.570	0.554	0.532	0.529	0.520
	Improve	85.24%	76.05%	10.50%	8.77%	6.14%	2.26%	0.529	0.020
	NMAE	2.252	1.096	0.490	0.478	0.468	0.441	0.434	0.428
80%	Improve	80.99%	60.95%	12.65%	10.46%	8.55%	2.95%	0.404	0.426
0070	NRMSE	3.714	2.159	0.584	0.571	0.560	0.533	0.530	0.520
	Improve	86.00%	75.91%	10.96%	8.93%	7.14%	2.44%	0.000	0.020

Table 4: Performance Comparison (Dimensionality = 20)

Training Data	Metrics	UserMean	SiteMean	SVD	PMF	NMF	GaP	PFM	CPFM
	NMAE	2.246	1.094	0.469	0.460	0.449	0.426	0.413	0.409
90%	Improve	81.79%	62.61%	12.79%	11.09%	8.91%	3.99%	0.413	0.409
90%	NRMSE	3.522	2.171	0.568	0.556	0.542	0.521	0.503	0.496
	Improve	85.92%	77.15%	12.68%	10.79%	8.49%	4.80%	0.000	0.400
	NMAE	2.252	1.096	0.470	0.462	0.451	0.427	0.415	0.410
80%	Improve	81.79%	62.59%	12.77%	11.26%	9.09%	3.98%	0.410	0.410
	NRMSE	3.714	2.159	0.570	0.558	0.545	0.522	0.504	0.498
	Improve	86.59%	76.93%	12.63%	10.75%	8.62%	4.60%	0.004	0.400

Impact of Parameters

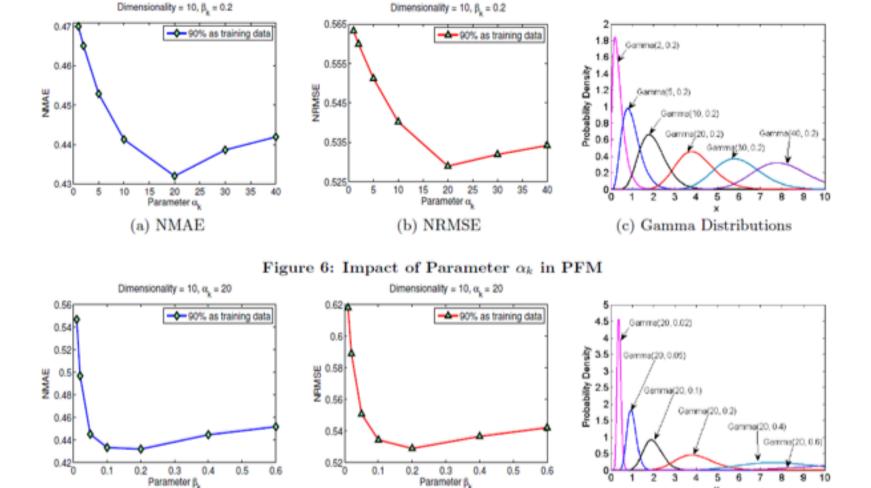


Figure 7: Impact of Parameter β_k in PFM

(b) NRMSE

(a) NMAE

(c) Gamma Distributions

Impact of Parameters

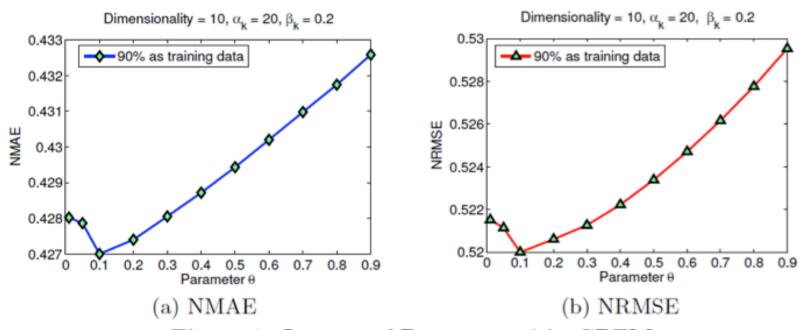


Figure 8: Impact of Parameter θ in CPFM

Concluding Remarks

- Social recommendation extends traditional models and techniques by using social graphs, ensembles, distrust relationships, clicks, etc.
- Fusing of social behavior information, e.g., social relationships, personal preferences, media consumption patters, temporal dynamics, location information, etc. provides better models for social recommendations

References

- J. Basilico and T. Hofmann. Unifying collaborative and content-based filtering.
 In ICML, 2004.
- J. S. Breese, D. Heckerman, and C. M. Kadie. Empirical analysis of predictive algorithms for collaborative filtering. In UAI, pages 43–52, 1998.
- M. Deshpande and G. Karypis. Item-based top-N recommendation algorithms. ACM Trans. Inf. Syst., 22(1):143–177, 2004.
- J. L. Herlocker, J. A. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for performing collaborative filtering. In SIGIR, pages 230–237. ACM, 1999.
- J. L. Herlocker, J. A. Konstan, and J. Riedl. An empirical analysis of design choices in neighborhood-based collaborative filtering algorithms. Inf. Retr., 5(4):287–310, 2002.
- G. Linden, B. Smith, and J. York. Industry report: Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Distributed Systems Online, 4(1), 2003.

References

- H. Ma, I. King, and M. R. Lyu. Effective missing data prediction for collaborative filtering. In SIGIR, pages 39–46, 2007.
- H. Ma, H. Yang, M. R. Lyu, and I. King. SoRec: social recommendation using probabilistic matrix factorization. In CIKM, pages 931–940, 2008.
- H. Ma, I. King, and M. R. Lyu. Learning to recommend with social trust ensemble. In SIGIR, pages 203-210, 2009.
- H. Ma, M. R. Lyu, and I. King. Learning to recommend with trust and distrust relationships. In RecSys, pages 189-196, 2009.
- B. M. Sarwar, G. Karypis, J. A. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In WWW, pages 285–295, 2001.
- R. Salakhutdinov, and A. Mnih. Probabilistic Matrix Factorization. In NIPS, 2007.
- D. D. Lee, and H. S. Seung. Algorithms for Non-negative Matrix Factorization.
 In NIPS, pages 556-562, 2000.